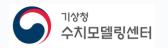
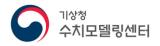
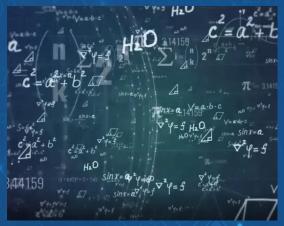

우리 기술로 우리나라에 맞춘

'한국형수치예보모델'

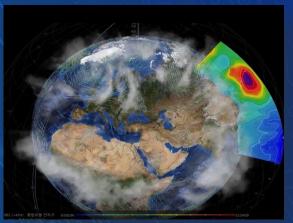


CONTENTS


- 수치예보와 수치예보모델
- □ 한국형수치예보모델(전지구)
- Ⅲ 한국형지역수치예보모델(동아시아)
- ₩ 개발 결과(예측성능)
- ∨ 향후 계획


적극적인 행정, 극적인 변화 적극행정

수치예보와 수치예보모델

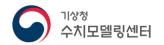

수치예보는 수치예보모델을 이용하여 대기의 상태와 운동을 수치화하고 슈퍼컴퓨터로 계산하여 미래의 날씨를 예측하는 과정

수치예보모델: 현재의 대기 상태로부터 대기를 설명하는 방정식을 이용하여 미래의 날씨를 계산

슈퍼컴퓨터 계산: 정교한 수치예보모델은 계산량이 방대하여 빠른 슈퍼컴퓨터가 필수적

미래의 날씨 예측

수치예보모델은 미래의 기상변화를 예측하는 소프트웨어

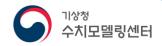

- ① 전체 지구를 수 억개의 바둑판 모양(격자)으로 쪼개고,
- ② 각각의 격자에 바람, 기온, 습도 등 현재의 관측자료를 입력한 후,
- ③ 대기의 상태 및 운동을 설명하는 대기방정식을 풀어
- ⇒ 미래의 대기 상태를 예측하는 소프트 웨어

|기상청 수치예보

예보국

수치예보과

예보국 수치예보센터

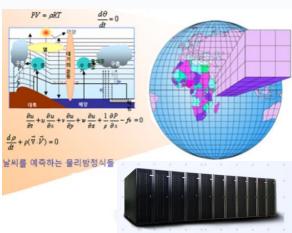


기상청 수치예보 역사

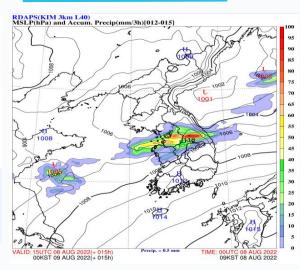
2020.4 2022. 5 1997.2 2010.5 2011.2 한국형 한국형 한국형 일본 전지구모델 영국 통합모델 수치예보모델 전지구예보모델 지역예보모델 운영시작 (UM) 개발시작 (RDAPS-KIM) (KIM) 운영시작 현업운영 운영시작 2007.3 2017.1 1991.1

수치모델링센터

수치예보 수행과정



- ① 수치예보 수행과정은 현재의 대기상태를 산출하는 전처리 과정과
- ② 미래의 날씨를 예측하는 수치예보모델 수행과정,
- ③ 일기도 생산 및 예보를 위한 자료의 분석 및 제공 등을 처리하는 후처리 과정으로 구성


전처리 과정

국제도 기상위성 NOAA, FY-1,3 정지 기상위성 MTSAT, FY-2 COMS 구름영상 관측 PH 전 연작 탐측 Rawinsonde 관측 유성자료수신 위성자료수신 의료 전작자료수신 기급, 전지구 관측자료 수집과 해독

수치예보모델 수행

후처리 과정

- 1) 전세계에서 관측자료를 수집하여
- 2) 해독, 품질검사, 객관분석을 거친 후
- 3) 현재 대기상태로 산출

- 1) 현재의 대기 상태로부터
- 2) 대기를 설명하는 방정식을 풀어
- 3) 미래의 날씨를 계산

- 1) 수치예보모델에서 만들어진 미래의 날씨자료를
- 2) 수요자가 보기 쉽고, 이해하기 쉬운 형태인 그림이나 표로 표현하는 과정

한국형수치예보모델

한국형수치예보모델 왜 만들었나?

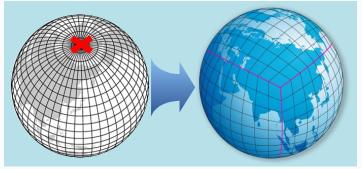
: 관심 기상현상의 예측성 향상을 위한 자체 기술 축적 한계

경험하지 못한 기상현상 빈발

국지적 집중호우, 태풍 이상진로 등 기상재해 피해 증가 자체 수치예보모델 부재

해외 수치예보모델 의존으로 국내 역량 강화 한계 자체 기술보유가 유일한 대안

기상예보 정확도를 결정하는데 수치예보 역할이 매우 큼


기상기술의 자립과 우리나라 기상, 기후환경에 적합한 지속 발전이 가능한 한국형 자체 수치예보모델 개발

l 한국형수치예보모델

모델의 특징: 고유 기술로 적시에 현업운영이 가능한 전지구 수치예보모델 개발

한국형수치예보모델 역학과정

01 역학

북극, 남극에서 계산 불안정을 해소한 육면체구 격자 구조

* 역학코어 : 수치예보 모델의 기초를 구성하는 부분으로 지구를 격자체계로 나누어 대기의 운동을 기술

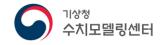
한국형수치예보모델 물리과정

02 물리

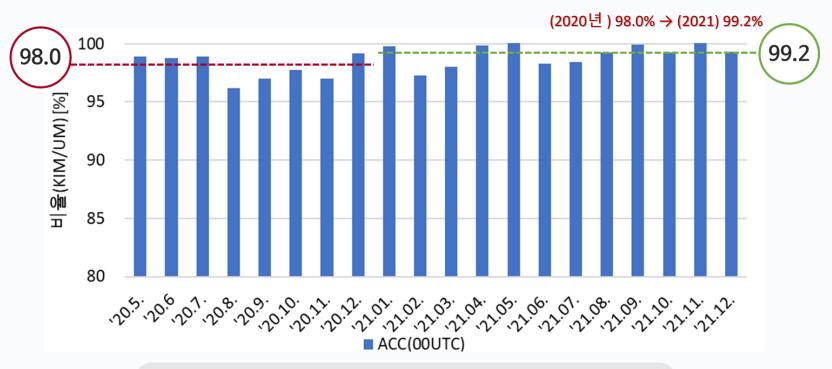
독자적으로 개발, 수정, 보완한 물리과정 기술

* 물리과정: 수치예보모델의 예보 정확도에 영향을 주는 복사, 강수, 난류 등의 현상을 물리학적 방법으로 표현한 시스템

관측자료



03 관측자료 처리


관측자료를 모델 격자에서 직접 처리할 수 있는 자료동화 고유기술 개발(Hybrid-4dEnVAR)

* 자료동화 : 각종관측자료를 받아 들여 좋은 것들을 가려낸 후 앞 시간의 모델자료와 잘 섞어 정확한 예보의 최적 조건을 생산하는 시스템

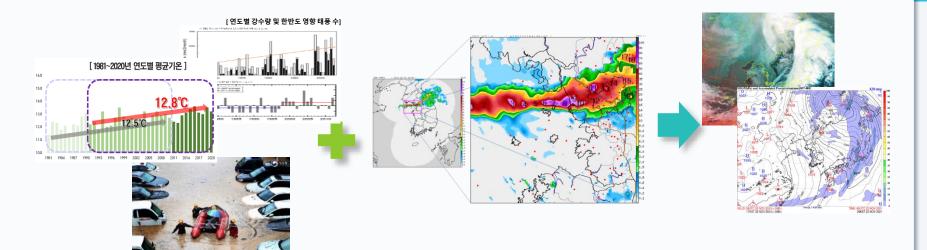
|한국형수치예보모델

기상청이 병행 운영 중 인 영국 통합모델(UM) 대비 약 99% 예측 성능

북반구 500hPa 지위고도 5일 예측 정확도(ACC) 비율

|한국형수치예보 자체기술확보의 의의

수치예보모델 원천기술 확보 및 개발체계 구축으로 기상주권 확보


- 자체 수치예보모델 보유국 으로 세계 유수 현업 기관과 동등한 위치에서 기술협력 * 수치모델 보유국 : 독일, 러시아, 미국, 영국, 일본, 중국, 캐나다, 프랑스, 한국 (유럽연합 제외)
 - 개발 全 과정(관측-자료동화-역학/물리과정-운영체계)을 자체 기술로 <mark>직접 수정·보완 가능</mark>
 - 한반도 특성 에 맞는 기상현상 예측에 집중 가능

한국형지역수치예보모델(동아시아)

1) 한국형지역수치예보모델 왜 만들었나?

최근 기후변화로 빈번하게 발생하는 국지적인 집중호우의 정확한 강도와 위치를 예측 하기 위해 한국형수치예보모델(전지구, KIM)의 2년간 운영 경험을 바탕으로 고해상도의 한국형지역수치예보모델 (RDAPS-KIM) 개발

경험하지 못한 기상현상 빈번하게 발생

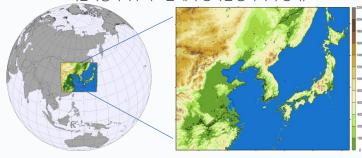
국지적 집중호우, 태풍 이상진로 등 기상재해 피해 증가

보다 상세한 기상정보 요구

전지구모델인 한국형예보모델(KIM)은 작은 규모의 국지성 집중호우에 대한 정확한 예측정보 생산에 한계

촘촘한 한국형 기상예보

시·공간적으로 상세한 기상정보를 제공할 수 있는 한국형지역수치예보모델 필요



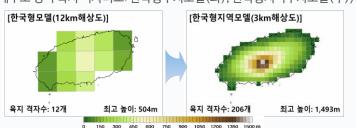
2) 무엇을 어떻게 만들었나?

: 우리나라 주변 기상특성을고려하여 3km 간격 동아시아 지역의 날씨를 예측하는 지역수치예보모델 개발

〈한국형지역수치모델 예측 영역인 동아시아 영역〉

01. 예측영역

한반도 기상에 주요한 영향을 미치는 중국과 북서태평양을 포함한 동아시아 영역


〈한국형지역수치모델 해상도와 구성〉

요소	해상도
수평 해상도	3km x 3km
격자수	1050(동서) x 840(남북)
연직층	40층 (모델 상단 : 50hPa)
영역중심	38。N, 126。E

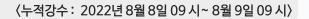
02. 해상도

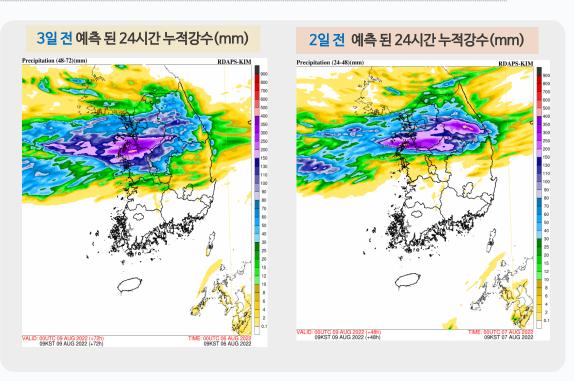
한국형지역수치모델은 한국형수치예보모델(전지구 모델,12km 간격) 대비, 16배 상세(3km 간격), 1시간 간격으로 3일 예보, 1일 4회 운영

〈제주도 영역 육지 격자비교: 한국형수치모델(좌), 한국형지역수치모델(우)

03. 한국 지형 맞춤형 기상현상 모의

한국의 독자 기술로 개발된 한국형 대기물리과정을 도입·활용하였고, 향후 지속적으로 개선




☑ 여름철 24시간 누적강수 예측성능 비교(2022년 8월 8일)

: 한반도 지역의 여름철 국지적인 집중호우에 대한 예측 성능 우수

한국형지역수치예보모델: 2022년 8월 8일 사례 시, 2~3일 전 수도권 지역 300mm 이상 강수량 예측

미래기상을 위한 **향후계획**

자연재해 변화

급격한사회적변화

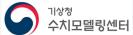
경제적 여건의 변화

지구온난화에 따른 위험 기상재해 증가 디지털,메타버스기술의성장 급속한신기술(bT,A),스마트폰등)보급 기후위기대응: 탄소중립, 신재생에너지 디지털지구시대: 인공지능, 디지털인프라구축

기상재해의 예방과 피해 경감을 위한 신뢰성 높은 방재기상 정보 요구 국민 개개인 생활에서 활용 가능한 **맞춤형 기상정보** 요구 산업계 의사결정과 업무 프로세스 개선에 도움이 되는 기상정보 요구

기후환경위기 대응을 위한 정책적 변화에 따라 '수요자 맞춤형 고해상도 수치예보자료 제공'

더 나은 미래를 위해


위험 기상 예측 정확도 개선

한국형 지역수치예보모델 예측성능 개선

※1km 수준의 고해상도 수치자료 정보 산출 체계 개발

자주적인 수치예보 기술 역량 축적

인공지능 기반 수치예보예측기술 고도화

